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Spherical Models with a Gates-Penrose-Type 
Phase Transition 
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Gates and Penrose have given criteria under which classical gases with weak 
long-range interactions fail to be described by the van der Waals equation with 
Maxwell's rule. Unfortunately, -examples of equations of state for such systems 
have not yet been produced. This paper examines the Gates-Penrose class of 
interactions--i.e., Ur(r)=q(r)+ 7q)(Tr), in the limit 7--+ 0, where the Fourier 
transform ~(p)  has a minimum at a nonzero value of p---for the spherical 
model on a one-dimensional lattice. Free energy and magnetization isotherms 
are computed; it is seen that there is a phase transition, but that the zero-field 
spontaneous magnetization is always zero (a parahelicoidal phase). However, 
the pair-correlation function may exhibit either long-range order or the 
appearance of oscillation. 
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nonferromagnetic; correlations; van der Waals; Maxwell's rule; Kac limit. 

1. G A T E S - P E N R O S E  C O N D I T I O N S  

In the third o f  a series o f  ar t icles on the van der  W a a l s  l imi t  for c lass ica l  

systems,  (2-4) Ga tes  and Penrose  ( G P  hence fo r th )  have  found that  for a 

cer ta in  class o f  in te rac t ions ,  sys tems of  c lass ica l  par t ic les  will  exhibi t  first- 

o rder  phase  t rans i t ions  which  do not  co r r e spond  to the van  der 

W a a l s - M a x w e l l  i so therms.  G P  studied con t inuous  sys tems in d d imens ions  

(d />  1) with t w o - b o d y  potent ia l s  o f  the fo rm 

U~(r) = q(r) + ~dq~(yr) (i) 
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where r E Rd and y > 0, which satisfy the conditions 

q(r) = q(-r)  

q(r) = +oo for 

Iq(r)l < C1 Irl -d-~ 

O(r) = O(--r) 

I r < oo 

I r < C~ Irl - a - "  

[ IO(r)ldr < oo 

Ir I ~ 2r o (hard core) 

for b r I> 2ro (e > O) 

(2a) 

(2b) 

(2c) 

(3a) 

(3b) 

(3c) 

(3d) 

Let 

r  = f~e ds ~(s) exp(2nip �9 s) 

be the Fourier Transform of O(r), and let ~t0( p, fl) be the free energy density 
at particle density p and temperature (kfl) -1 of the reference system, i.e., a 
system with two-body potential q(r) alone. (Here 0 ~<p ~<Pc ~ maximum 
particle density, and 0 ~<fl < oo.) For any function f,  define 

C E ( f )  = maximal convex function not exceeding f 
(called the convex envelope o f f )  

and 

M E ( f  )(p) = inf( 1 [f(p + h) + f ( p  - h)]) 

(called the midpoint envelope o f f )  

Define the generalized van der Waals free energy for a system with potential 
U~(r) as 

~w(P, fl) =- CE(q%(p, fl) + lqfi(O) p2) 

In one dimension, if q(r) is a strict hard core, [q(r)= 0, for [r[ > 2r0] then 

P P ~,o~, ~) = ~ l o g - -  p~ - -p  
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and the van der Waals pressure is given by 

pwCo, fl)-  N -  1 fl)-fl( 1 -P/Pc) 
1 ^ 2 

F -~- ~(0) p 

with the equal area rule when ~(0) < 0 and fl > 27/4 I ~b(0)l Pc. 
If qJ(p, fl, ~) is the free energy density for the system with potential U~(r) 

and ~,(p, f l ) -  lim~_~ 0 q/(p, fl, y) is the free energy density in the weak long- 
range limit, GP found that if 

inf ~(p)  < min(0, 2~b(0)) (4) 
P 

then qJ(p, fl) < qJw(P, fl) for all values of (p, fl) for which either 

~Uo(P, fl) + ~ ( O ) p  2 > CE[~0(p, fl) + - ~ ( 0 ) p  2 ] (Sa) 

o r  

~'0(P, fl) + �88 inf ~(p)p2 > ME(~v0(p ' fl) + �88 inf ~ ( p ) p  z) (5b) 
p P 

In particular, if either (5a) or (5b) occurs in conjunction with (4), then the 
system has a first-order phase transition which is not described by the van 
der Waals equation of state with the Maxwell rule. 

If a one-dimensional system with a strict hard-core reference potential 
q(x) satisfies condition (4), then 

1 inf~b(p)p2 P p bp2 
v/0( p, fl) + -~- = ~ log Pc - P 

where --b = �88 infp ~b(p) < 0. For fl > 27/8pcb, this expression is not convex 
in p, which implies that condition (5b) can be satisfied in this case. 

However, GP did not actually give an example of what an equation of 
state might be for such a system; even in one dimension, examples are 
difficult to compute. One can attempt to adapt the "transfer matrix" methods 
of K.U.H. (s) to such a computation (9) by constructing a potential which 
satisfies condition (4), of the form 

y~(yx)  = yAe-  r~i~l _ yRe-  y~l~l 

Such a potential gives rise to a family K(y) of integral operators, and the 
pressure at each y can be derived from the spectral radius, 

lira I Tr(KN(y))I~/~v 
N-..* oo 
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Previous investigators have evaluated the spectral radius in the weak long- 
range limit by interchanging the limit N ~  oo with the limit 7 ~ 0, which 
simplifies the computation enormously. (8'11) However, this procedure always 
results in the van der Waals equation with Maxwell's rule, even for potentials 
which satisfy condition (4), and is thus not even heuristically useful. 

2. A BRIEF REVIEW OF THE SPHERICAL MODEL AND THE MEAN 
SPERICAL MODEL 

We may begin to understand the differences between the Gates-Penrose 
transition and the van der Waals-Maxwell transition by contrasting tran- 
sitions produced by GP-type interactions with ferromagnetic transitions in 
the spherical model. (1) In an N-site spherical model, each site k (k = 1 ..... N) 
is given a real-valued spin variable, a k. Admissible states are sets 

a k : k = l , . . . , N ,  ~ a M=N 
k = l  

The energy of each state is 

HN(a) = -- ( ~ Ikflkat+ ~hkGk) (6) 
l <~k< l<~N k =  l 

where Ikt is the interaction strength between the spins a k and a~, and h k is the 
external field. For a one-dimensional model, the distance between points k 
and l is just ] k - / [ ;  we consider only interactions of the form Ikl = J([k- ll) 
and external fields of uniform strength: h k = h for all k. 

The canonical partition function is given by 

ZN(/3, h)= ~ f exp[--flHw(a)] d/2N(a ) (7) 

where dl~N(a ) is the uniform measure on the sphere x : Y~k=l ak= N, and 

2 7 r N / 2 N ( N - -  1)/2 F 
AN = J d~'N(a) = F(N/2) 

The infinite-volume free energy density is given by 

F(fl, h) = - lim (.l~ ZN~3' h) ) 
N--*oo ~ N  

Let 

g(O)=-- ~ J(Ikl) eik~ 
k - -- oo 
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Then, a steepest descent computation, (9) followed by a use of Szeg6's 
theorem, (5) yields the result 

1 1 + log fl 
F(fl, h)=-~-- fl 

h 2 1 f 2't 

{ s - 4 0 ) ]  s - g ( O )  ~- 2=/~ o aOlog[s-g(O)]) 
(8) 

when a solution 

In particular, 

s exists to the equation 

h 2 1 f 2 ~  
1--[s_g(O)] z t - ~  o 

dO 
s -g(O) 

S ~ g m  

where gm ~ suP0<0<2, g(O) 
Nonexistence of a solution to equation (9) can occur only if 

(9) 

(10) 

1 j.2= dO 

2n o gm--g(O) =tic < ~ (11) 

Then, i f f l  is large enough (/7 >tic) and Iht is small enough, Eq. (9) has no 
solution; in this case the system has a phase transition, i.e., a loss of 
analyticity of F(fl, h). We will discuss this case further in Section 4. 

The magnetization is defined as 
c~F 

m(fl, h) - cgh (fl' h) 

It follows from Eqs. (8) and (9) that 

m(]3, h ) = - -  
h 

s --g(0) (12) 

For the purposes of calculation, it is often useful to consider the Mean 
Spherical model. The Mean Spherical partition function corresponding to 
Eq. (7)is 

N 

. }) +B Y' a ( l k - l l )akcr ,+h  ~ G (13) 
k=l  k= l  

subject to the condition that 

E M o 2 = N  (14) 
1 

822/38/3 4-1I 
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where ENd() is the expectation with respect to the QN distribution. 
Equation (14) determines s N. Furthermore, as N ~  oo, the value of s u which 
satisfies Eq. (14) approaches the value of s which satisfies Eq. (9). 

The Mean Spherical model can be used to compute the spin correlations 
in the Spherical model. (7) The zero-field pair-correlation in the Mean 
Spherical model is given by taking the limit N ~ oo of 

I 2 1 do aka~ exp - ~ aj 
E~N(akat) AuQx(SN, fl, O) ~N j=l 

+f l  ~ J ( t n - - j l ) a j a , ,  (15a) 
j , n =  l 

1 
= ~ -  (s N - fN)~ 1 (15b) 

The right-hand side of equation (15b) is the (k, l) element of the inverse of 
the matrix fl(s N --IN).  If the limiting value of the s N is greater than the 
supremum of g(0), and if the limit N--+ oo of E~(akal)  is taken so that k, l 
are not close to the boundary of the lattice on which they lie, then the limit 
of M EN(akat)  will depend only on the distance I k - l l ,  and by Szeg6's 
theoremS5) 

EM(Ik-/I , /~)~- lira M l[_jZ'~ e x p i ( I k - l t  O) ~" E N (a k at) = dO 
U--*oO 2nfl o s-----~O) 

(16) 

The symmetry of the interaction implies that g(O) = g(2n - 0), and we can 
then rewrite Eq. (16) as 

_!f~  cos(Ik-II 0) 
EM(I k -  II,/~) --flTr 0 s 2 - 7 ~  dO (17) 

3. THE SPHERICAL MODEL IN THE WEAK, LONG-RANGE LIMIT 

In the Spherical model, the lattice spacing between points acts as a 
hard-core potential. The interaction -J(I k - l l )  corresponds to the long-range 
potential ~ of the gas [Eq. (1)]. Let 

g~(O)- y ~ S(~k) e '*~ 
k -  - oo 

If J is sufficiently regular, then 

lim gr(Zzc~) = ](r 
~,~0 
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for any real number 4, where j(r is the Fourier transform of J(k), as defined 
above; furthermore, 

Let 

lim sup gr(O)= sup J (O)=- -  inf [--J(0)] (lS) 
y~O Oe[0,2~l ~ e[O,oo) 0 ~[0,~)  

Jm=- sup J(r 
~[0 ,oo)  

Note that if the interaction is ferromagnetic, i.e., J(k)~  0 for all k, then 
]m =.f(0). For the potentials that we consider here, note that Jm ~ 0. 

In the Spherical model, as previously noted, it is possible to have a 
phase transition for fixed y > 0  [see Eq. ( l l )  ft., and Section4]. 2 If, 
however, J is continuously differentiable and 

FJ(k)l c kk1-2-  

then gy(O) will be continuously differentiable in 0 for all 7 > O, and hence 
there will be no phase transition for 7 > 0 [since tic, defined in Eq. (11), will 
be +0o]. 

A phase transition may nevertheless be obtained by taking 7 ~ 0. The 
existence and nature of the phase transition in this limit are determined 
entirely by the constant Jm" 

There are three cases to consider: 

i. J m = 0  

ii. JCm ---~ J(0) > 0 

iii. J,~ > max[0,J(0)] 

For any fixed 0 E (0, 2~r) 

lim g~(O) = 0 
~ 0  

Thus, i f J  m = 0, as 7--' 0 the solution s(7) of Eq. (9) approaches continuously 
the solution s of the equation 

h 2 1 
1 = [s --  ] (0 )12  + fl--s (19)  

for all values of h and all fl > 0. Hence, there is no loss of analyticity and no 
phase transition in the limit p -~ 0 when ]m -- 0. 

: This cannot occur in the classical continuum gas: if the potentials satisfy conditions 

(3a)-(3d),  there is never a phase transition for fixed 7 > 0. Phase transitions occur only after 
the limit 7 ~  0 is taken, t2) 
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If J,, > 0, as 7 ~  0, requirement (10) and Eq. (18) force s ~'fm always, 
so that the solution of Eq. (9) cannot approach the solution of Eq. (19) for 
all values of h and all fl > 0. However, if fl < fl, where 

1 jq = -,,-- 
Jm 

then s(y) does approach the solution of Eq. (19) as 7 ~  0, and the free energy 
and magnetization are smooth functions of h. The magnetization is zero at 
zero field strength, i.e., m(fl, 0 ) = 0 ,  as expected above the critical 
temperature. Figure 1 depicts a magnetization isotherm for fl < fl when ? = 0. 
(For y > 0, there is no critical fl, and all magnetization isotherms appear as 
smooth as the curve in Fig. 1. This is also the case for ? = 0 when Jm = 0.) 

The zero-field pair-correlations can also be computed in the limit y ~ 0. 
Applying the above discussion to Eq. (17), it follows that for fl </~ (all fl > 0 
when Jm = 0) 

E M ( I K  - -  = 6k, 

i.e., the spins are completely uncorrelated above the critical temperature. 
We now summarize the results for the magnetization and zero-field 

pair-correlations when fl > fl (followed by a sketch of the derivation). 

i i  i i i  i hs 

Fig. 1. m(fl, h) for fl < fl (at ? = 0). 
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(a) In case (ii) 

lim m(fl, h ) = ± ( 1 - ~ )  
h - ~ 0 ±  

(See Fig. 2.) 
(b) In case (iii), when Ih I < ~/(fl), where 

1/2 

]~(fl)=[Jm-J(0)] ( 1 - ~ )  1/2 

h 
m(fl, h) = ]m - - J (0 )  

(See Fig. 3.) 
(c) In both cases (i) and (ii) 

1, I k - t l = O  
EM(Jk--tl'~)= 1--~/~, Ik--ll¢O 

i.e., long-range order. 
In case (ii), which includes the ferromagnetic case, s(y ) approaches the 

solution s > J(0)  of Eq. (19) for any h =P 0. If h ~ 0, then s ~ J(0)  in such a 
way that 

h z 1 
tim - 1 - - -  
~o  [~_ j(o)l  ~ ~J(o) 

- - -  - _ . . . . . . .  , ° . . . .  , . . . . .  i 

k 

Fig. 2. m(fl, h) for fl > fl= [j(O)]~' aty=0. 
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4"i 

~.r j - -  
iii , , 

L 

h> 

Fig. 3. m(fl, h) forfl>fl=(Jm)-' < [J(0)] -~ at y = 0 .  

and result (a), which is well known, (6) follows from Eq. (12) 
In case (iii), s(7) approaches the solution s > Jm of Eq. (19) when 

]hi >/~(fl). If [hi < fi(fl), then 

lira s(7) = Jm 

and result (b) again follows from Eq. (12). Hence, in this case, the 
magnetization isotherms are continuous in h for all fi > 0, but they each 
develop a linear region when Ihl</~(fl). Since r n ~ , 0 ) = 0 ,  there is no 
residual net magnetization, although the lattice cannot be considered disor- 
dered. 

To obtain result (c), observe that for [k - l 1 4= 0, as y ~  0 

and 

1 f ,~ cos(Ik-  tl O) 

l f ~  cos~lk-,I o) d o - ~  ~ do 
an o ~ - ~ 5 - - g ~  Io s(y)-g~(e) = ~ (2o) 

In order to satisfy Eq. (9), the second integral in Eq. (20) must approach 

1 
1 - -  + O ( f i )  
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and the formula for the mean-spherical zero-field pair correlation follows. 
Application of the Kac-Thompson transformation between mean-spherical 
and spherical correlations (17) to this model reveals that the spherical pair 
correlations equal E M ( l k -  I1,/3) for all/3. 

Since EM(Ik - 11,/3) is independent of tk - l I and nonzero for/3 > fi, this 
demonstrates the existence of long-range order whenever the weak, long- 
range limit is taken for sufficiently smooth interactions. While long-range 
order is expected in the ferromagnetic case, it is surprising to observe long- 
range order in case (iii), when the zero-field spontaneous magnetization is 
zero. Note that case (iii) includes the Gates-Penrose conditions (4). An 
example of a smooth function J(x )  which falls under case (iii) is 

where 

J(x )  = Ae  -alxl - Re-r lx l  

- - >  > 
r -Y  

4. FURTHER INVESTIGATIONS ON THE SPHERICAL MODEL (FIXED 
v >o) 

As previously noted, the Spherical model may have phase transitions 
for potentials satisfying conditions (3a)-(3d) without introducing the weak, 
long-range limit parameter ?. A potential J ( I k - l l )  will exhibit a spherical 
phase transition when the Fourier series 

co 

g ( 0 ) =  ~ J ( k ) e  i~~ 
/ , ' ~  - - o o  

satisfies condition (11). For such interactions, a phase transition occurs 
when/3 >/3c- 

Although Eq. (9) cannot be satisfied when/3 >/3c, and h 2 < h i, where 

F(fl, h) exists (9) and is given by 

1 (1  + log/3 h 2 
F(fl, h) = ~ -  /3 [gm - J(0)] gm -- g(O) 

1 f 2~ -g(0)]) 
+ 2~fi~fl o dOl~ 
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[which is obtained by setting s =gin in Eq. (8)]. Then the magnetization 
exists and is given by 

h 
h > h  c or f l<t ic ,  ssat isf iesEq.(9)  

s -  g (0 ) '  
m(fl, h) = 

h 
h < hc, fl > flc, gin>g(O) gm--g(O)' 

If g m =  g(0), then 

h-~O• 

1/2 

Hence, the magnetization isotherms are qualitatively identical to the case of 
the weak, long-range limit discussed in Section 3. Note that the weak long- 
range limit can be taken for interactions satisfying condition (11). If this is 
done, it is found that limy_.o flc(7 ) =/~, lim~_.0 he( fl, 7)=/;(fl),  so that the weak 
long-range limit does not introduce a "new" phase-transition. 

However, a difference appears in the pair-correlations. For fl < tic, the 
zero-field correlations are given by Eq. (17). When fl > tic, the continuous 
version of Szeg6's theorem does not suffice to evaluate the thermodynamic 
limit for EM(okal). 

Let 2U,j, j = 1,..., N be the eigenvalues of JN, listed in descending order 
of magnitude (counting multiplicity), with respective (orthonormalized) 
eigenvectors 

gtu, J = (~'Nd(1), gtud(2) ..... ~Nd(N)) 

The mean spherical condition [Eq. (14)] can be rewritten as 

1 N 
I = ~ Z (SN -- AN,j)-1 (21) 

j= l  

and the N-particle pair correlation is given by 

1 N 

E~(aka ' )  = -fl- j~-, (sN -- )~N,j) 

From results known about the spectrum of Toeplitz matrices, (5) it seems 
reasonable to believe that for a g(O) as pictured in Fig. 4 [note that 
g(O) =g(2zc + 0)=g(- -0) ] ,  the two largest eigenvalues correspond to g(Oo) 
and g(--Oo) = g,, and Szeg6's theorem applies to give 

1 N 1 1 (~ dO tic 
(22) 

f lN j (s u -- AN,j) ~ 2zcfl )_,~ gm • g(O) fl 
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T s o) 

--Tr - ' 0 =  
w 

O o 11" 0 

Fig. 4. Example of a g(O) from a potential which has a spherical phase transition near 00, 
g(O)=g(Oo)--clO-OoiC+o([O 001~), e < 1. 

as N-~ m. This leads us to further conjecture that, as N---, oo, 

1 ~ ~'U,k(_ J) ~'N.,(J) 
f l  j=  3 SN - -  2N , j  

1 f'~ exp[ i l k - l lO]dO (23) 
-~ 2?8 -~ g m -  g(O) 

Equations (21) and (22) imply that, as N ~  oo, 

1 2 1 tic 
j~221 ,1 fiN .: s N -- ~N,j 

If the N ~  oo limit for the pair correlations is taken so that t k - l [  is 
constant, but k and l are kept away from the ends of the lattice, then we are 
led to believe that in this limit 

1 ~ qJN,k(J)qJN,t(J) (1- -  @ ) c o s ( I k - - l ]  00) (24) 
t ~ j= 1 SN -- 2N,j 

Combining (23) and (24) gives 

EM(Ik - - l [ , f l )=  ( 1 - @ ) c o s ( l k - - l ] O o ) + ; f  ' ~c~  (25) 
o gm -- g(O) 

The Kac-Thompson transformation again gives equality between spherical 
and mean-spherical pair correlations for all temperatures if Eq. (25) is 
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correct. Equation (25) demonstrates long-range order for 0 0 = 0  [the 

ferromagnetic case], and long-range oscillatory behavior of the pair 
correlation as I k - l l ~ o o  for 0o4:0 .  Presumably,  if g(O) has several 
cusplike maxima, there would be long-range oscillatory terms for all the 

cusps of steepest order (i.e., smallest e for cusps of the type in Fig. 4). 

In three or more dimensions,  the spherical model can exhibit phase tran- 
sitions for short-range interactions. In this case, the free energy and 
magnetizat ion show the same behavior as above. However, the correlation 

functions do not exist in general for fl > flc.~l~ 
For a treatment of other aspects of some nonferromagnetic spherical 

models which may have some relevance to this model, see Ref. 12. 
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